Holomorphically Induced Representations of Some Solvable Lie Groups
نویسندگان
چکیده
منابع مشابه
Quantization and Representations of Solvable Lie Groups
Introduction. In this note, we will announce a characterization of a connected, simply connected Type I solvable Lie group, G, and present a complete description of the set of all unitary equivalence classes of irreducible unitary representations of G together with a construction of an irreducible representation in each equivalence class. This result subsumes the results previously obtained on ...
متن کاملSome Quantum Analogues of Solvable Lie Groups
Introduction. In the papers [DK1-2],[DKP1-2] the quantized enveloping algebras introduced by Drinfeld and Jimbo have been studied in the case q = ε, a primitive l-th root of 1 with l odd (cf. §2 for basic definitions). Let us only recall for the moment that such algebras are canonically constructed starting from a Cartan matrix of finite type and in particular we can talk of the associated clas...
متن کاملIrreducible Representations of Solvable Lie Superalgebras
The description of irreducible finite dimensional representations of finite dimensional solvable Lie superalgebras over complex numbers given by V. Kac is refined. In reality these representations are not just induced from a polarization but are twisted ones, as infinite dimensional representations of solvable Lie algebras. Various cases of irreducibility (general and of type Q) are classified.
متن کاملSuperrigid Subgroups of Solvable Lie Groups
Let Γ be a discrete subgroup of a simply connected, solvable Lie group G, such that AdG Γ has the same Zariski closure as AdG. If α : Γ → GLn(R) is any finite-dimensional representation of Γ, we show that α virtually extends to a continuous representation σ of G. Furthermore, the image of σ is contained in the Zariski closure of the image of α. When Γ is not discrete, the same conclusions are t...
متن کاملHyper–Kähler Quotients of Solvable Lie Groups
In this paper we apply the hyper-Kähler quotient construction to Lie groups with a left invariant hyper-Kähler structure under the action of a closed abelian subgroup by left multiplication. This is motivated by the fact that some known hyper-Kähler metrics can be recovered in this way by considering different Lie group structures on Hp× H (H: the quaternions). We obtain new complete hyper-Kähl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2001
ISSN: 0022-1236
DOI: 10.1006/jfan.2001.3793